The Ghirlanda-Guerra identities

نویسندگان

  • Pierluigi Contucci
  • Cristian Giardinà
چکیده

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8 M ay 2 00 9 A connection between the Ghirlanda - Guerra identities and ultrametricity

We consider a symmetric positive definite weakly exchangeable infinite random matrix and show that, under a technical condition that its elements take a finite number of values, the Ghirlanda-Guerra identities imply ultrametricity.

متن کامل

A Connection between Ghirlanda-guerra Identities and Ultrametricity

We consider a symmetric positive definite weakly exchangeable infinite random matrix whose elements take a finite number of values and we prove that if the distribution of the matrix satisfies the Ghirlanda-Guerra identities then it is ultrametric with probability one.

متن کامل

M ay 2 00 5 the ghirlanda - guerra identities

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

متن کامل

- guerra identities

If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covariance.

متن کامل

Self-Averaging Identities for Random Spin Systems

We provide a systematic treatment of self-averaging identities for various spin systems. The method is quite general, basically not relying on the nature of the model, and as a special case recovers the Ghirlanda-Guerra and Aizenman-Contucci identities, which are therefore proven, together with their extension, to be valid in a vaste class of spin models. We use the dilute spin glass as a guidi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005